Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Infect Dis ; 226(11): 1887-1896, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135319

ABSTRACT

BACKGROUND: Despite the advent of safe and effective coronavirus disease 2019 vaccines, pervasive inequities in global vaccination persist. METHODS: We projected health benefits and donor costs of delivering vaccines for up to 60% of the population in 91 low- and middle-income countries (LMICs). We modeled a highly contagious (Re at model start, 1.7), low-virulence (infection fatality ratio [IFR], 0.32%) "Omicron-like" variant and a similarly contagious "severe" variant (IFR, 0.59%) over 360 days, accounting for country-specific age structure and healthcare capacity. Costs included vaccination startup (US$630 million) and per-person procurement and delivery (US$12.46/person vaccinated). RESULTS: In the Omicron-like scenario, increasing current vaccination coverage to achieve at least 15% in each of the 91 LMICs would prevent 11 million new infections and 120 000 deaths, at a cost of US$0.95 billion, for an incremental cost-effectiveness ratio (ICER) of US$670/year of life saved (YLS). Increases in vaccination coverage to 60% would additionally prevent up to 68 million infections and 160 000 deaths, with ICERs

Subject(s)
COVID-19 , Developing Countries , Humans , Cost-Benefit Analysis , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
2.
J Int AIDS Soc ; 25(1): e25864, 2022 01.
Article in English | MEDLINE | ID: covidwho-1632292

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has affected women and children globally, disrupting antiretroviral therapy (ART) services and exacerbating pre-existing barriers to care for both pregnant women and paediatric populations. METHODS: We used the Spectrum modelling package and the CEPAC-Pediatric model to project the impact of COVID-19-associated care disruptions on three key populations in the 21 Global Plan priority countries in sub-Saharan Africa: (1) pregnant and breastfeeding women living with HIV and their children, (2) all children (aged 0-14 years) living with HIV (CLWH), regardless of their engagement in care and (3) CLWH who were engaged in care and on ART prior to the start of the pandemic. We projected clinical outcomes over the 12-month period of 1 March 2020 to 1 March 2021. RESULTS: Compared to a scenario with no care disruption, in a 3-month lockdown with complete service disruption, followed by 3 additional months of partial (50%) service disruption, a projected 755,400 women would have received PMTCT care (a 21% decrease), 187,800 new paediatric HIV infections would have occurred (a 77% increase) and 516,800 children would have received ART (a 35% decrease). For children on ART as of March 2020, we projected 507,200 would have experienced ART failure (an 80% increase). Additionally, a projected 88,400 AIDS-related deaths would have occurred (a 27% increase) between March 2020 and March 2021, with 51,700 of those deaths occurring among children engaged in care as of March 2020 (a 54% increase). CONCLUSIONS: While efforts will continue to curb morbidity and mortality stemming directly from COVID-19 itself, it is critical that providers also consider the immediate and indirect harms of this pandemic, particularly among vulnerable populations. Well-informed, timely action is critical to meet the health needs of pregnant women and children if the global community is to maintain momentum towards an AIDS-free generation.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , HIV Infections , Child , Communicable Disease Control , Female , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Humans , Infectious Disease Transmission, Vertical/prevention & control , Pandemics , Pregnancy , SARS-CoV-2
3.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750467

ABSTRACT

Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres;Contact Tracing (CT) in households of cases;Isolation Centres (IC), for cases not requiring hospitalisation;community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS);and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (R e ) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER) <US$1,290/year-of-life saved (YLS) to be cost-effective. Findings With R e 1.5, HT resulted in the most COVID-19 deaths and lowest costs over 360 days. Compared with HT, HT+CT+IC+MS reduced mortality by 76%, increased costs by 16%, and was cost-effective (ICER $350/YLS). HT+CT+IC+MS+QC provided the greatest reduction in mortality, but increased costs by 95% compared with HT+CT+IC+MS and was not cost-effective (ICER $8,000/YLS). With R e 1.2, HT+CT+IC+MS was the least costly strategy, and HT+CT+IC+MS+QC was not cost-effective (ICER $294,320/YLS). Interpretation In South Africa, a strategy of household contact tracing, isolation, and mass symptom screening would substantially reduce COVID-19 mortality and be cost-effective. Adding quarantine centres for COVID-19 contacts is not cost-effective.

4.
Clin Infect Dis ; 73(9): e2908-e2917, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501002

ABSTRACT

BACKGROUND: We projected the clinical and economic impact of alternative testing strategies on coronavirus disease 2019 (COVID-19) incidence and mortality in Massachusetts using a microsimulation model. METHODS: We compared 4 testing strategies: (1) hospitalized: polymerase chain reaction (PCR) testing only for patients with severe/critical symptoms warranting hospitalization; (2) symptomatic: PCR for any COVID-19-consistent symptoms, with self-isolation if positive; (3) symptomatic + asymptomatic once: symptomatic and 1-time PCR for the entire population; and (4) symptomatic + asymptomatic monthly: symptomatic with monthly retesting for the entire population. We examined effective reproduction numbers (Re = 0.9-2.0) at which policy conclusions would change. We assumed homogeneous mixing among the Massachusetts population (excluding those residing in long-term care facilities). We used published data on disease progression and mortality, transmission, PCR sensitivity/specificity (70%/100%), and costs. Model-projected outcomes included infections, deaths, tests performed, hospital-days, and costs over 180 days, as well as incremental cost-effectiveness ratios (ICERs, $/quality-adjusted life-year [QALY]). RESULTS: At Re = 0.9, symptomatic + asymptomatic monthly vs hospitalized resulted in a 64% reduction in infections and a 46% reduction in deaths, but required >66-fold more tests/day with 5-fold higher costs. Symptomatic + asymptomatic monthly had an ICER <$100 000/QALY only when Re ≥1.6; when test cost was ≤$3, every 14-day testing was cost-effective at all Re examined. CONCLUSIONS: Testing people with any COVID-19-consistent symptoms would be cost-saving compared to testing only those whose symptoms warrant hospital care. Expanding PCR testing to asymptomatic people would decrease infections, deaths, and hospitalizations. Despite modest sensitivity, low-cost, repeat screening of the entire population could be cost-effective in all epidemic settings.

5.
Nat Commun ; 12(1): 6238, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493104

ABSTRACT

Low- and middle-income countries are implementing COVID-19 vaccination strategies in light of varying vaccine efficacies and costs, supply shortages, and resource constraints. Here, we use a microsimulation model to evaluate clinical outcomes and cost-effectiveness of a COVID-19 vaccination program in South Africa. We varied vaccination coverage, pace, acceptance, effectiveness, and cost as well as epidemic dynamics. Providing vaccines to at least 40% of the population and prioritizing vaccine rollout prevented >9 million infections and >73,000 deaths and reduced costs due to fewer hospitalizations. Model results were most sensitive to assumptions about epidemic growth and prevalence of prior immunity to SARS-CoV-2, though the vaccination program still provided high value and decreased both deaths and health care costs across a wide range of assumptions. Vaccination program implementation factors, including prompt procurement, distribution, and rollout, are likely more influential than characteristics of the vaccine itself in maximizing public health benefits and economic efficiency.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Cost-Benefit Analysis/methods , SARS-CoV-2/immunology , COVID-19/immunology , Hospitalization/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , South Africa
6.
Ann Intern Med ; 174(4): 472-483, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201212

ABSTRACT

BACKGROUND: Colleges in the United States are determining how to operate safely amid the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVE: To examine the clinical outcomes, cost, and cost-effectiveness of COVID-19 mitigation strategies on college campuses. DESIGN: The Clinical and Economic Analysis of COVID-19 interventions (CEACOV) model, a dynamic microsimulation model, was used to examine alternative mitigation strategies. The CEACOV model tracks infections accrued by students and faculty, accounting for community transmissions. DATA SOURCES: Data from published literature were used to obtain parameters related to COVID-19 and contact-hours. TARGET POPULATION: Undergraduate students and faculty at U.S. colleges. TIME HORIZON: One semester (105 days). PERSPECTIVE: Modified societal. INTERVENTION: COVID-19 mitigation strategies, including social distancing, masks, and routine laboratory screening. OUTCOME MEASURES: Infections among students and faculty per 5000 students and per 1000 faculty, isolation days, tests, costs, cost per infection prevented, and cost per quality-adjusted life-year (QALY). RESULTS OF BASE-CASE ANALYSIS: Among students, mitigation strategies reduced COVID-19 cases from 3746 with no mitigation to 493 with extensive social distancing and masks, and further to 151 when laboratory testing was added among asymptomatic persons every 3 days. Among faculty, these values were 164, 28, and 25 cases, respectively. Costs ranged from about $0.4 million for minimal social distancing to about $0.9 million to $2.1 million for strategies involving laboratory testing ($10 per test), depending on testing frequency. Extensive social distancing with masks cost $170 per infection prevented ($49 200 per QALY) compared with masks alone. Adding routine laboratory testing increased cost per infection prevented to between $2010 and $17 210 (cost per QALY gained, $811 400 to $2 804 600). RESULTS OF SENSITIVITY ANALYSIS: Results were most sensitive to test costs. LIMITATION: Data are from multiple sources. CONCLUSION: Extensive social distancing with a mandatory mask-wearing policy can prevent most COVID-19 cases on college campuses and is very cost-effective. Routine laboratory testing would prevent 96% of infections and require low-cost tests to be economically attractive. PRIMARY FUNDING SOURCE: National Institutes of Health.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Pneumonia, Viral/prevention & control , Universities , Adult , COVID-19/epidemiology , COVID-19 Testing , Communicable Disease Control/economics , Cost-Benefit Analysis , Female , Humans , Male , Masks , Mass Screening/economics , Pandemics , Physical Distancing , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
7.
JAMA Netw Open ; 3(12): e2028195, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-985881

ABSTRACT

Importance: Approximately 356 000 people stay in homeless shelters nightly in the United States. They have high risk of contracting coronavirus disease 2019 (COVID-19). Objective: To assess the estimated clinical outcomes, costs, and cost-effectiveness associated with strategies for COVID-19 management among adults experiencing sheltered homelessness. Design, Setting, and Participants: This decision analytic model used a simulated cohort of 2258 adults residing in homeless shelters in Boston, Massachusetts. Cohort characteristics and costs were adapted from Boston Health Care for the Homeless Program. Disease progression, transmission, and outcomes data were taken from published literature and national databases. Surging, growing, and slowing epidemics (effective reproduction numbers [Re], 2.6, 1.3, and 0.9, respectively) were examined. Costs were from a health care sector perspective, and the time horizon was 4 months, from April to August 2020. Exposures: Daily symptom screening with polymerase chain reaction (PCR) testing of individuals with positive symptom screening results, universal PCR testing every 2 weeks, hospital-based COVID-19 care, alternative care sites (ACSs) for mild or moderate COVID-19, and temporary housing were each compared with no intervention. Main Outcomes and Measures: Cumulative infections and hospital-days, costs to the health care sector (US dollars), and cost-effectiveness, as incremental cost per case of COVID-19 prevented. Results: The simulated population of 2258 sheltered homeless adults had a mean (SD) age of 42.6 (9.04) years. Compared with no intervention, daily symptom screening with ACSs for pending tests or confirmed COVID-19 and mild or moderate disease was associated with 37% fewer infections (1954 vs 1239) and 46% lower costs ($6.10 million vs $3.27 million) at an Re of 2.6, 75% fewer infections (538 vs 137) and 72% lower costs ($1.46 million vs $0.41 million) at an Re of 1.3, and 51% fewer infections (174 vs 85) and 51% lower costs ($0.54 million vs $0.26 million) at an Re of 0.9. Adding PCR testing every 2 weeks was associated with a further decrease in infections; incremental cost per case prevented was $1000 at an Re of 2.6, $27 000 at an Re of 1.3, and $71 000 at an Re of 0.9. Temporary housing with PCR every 2 weeks was most effective but substantially more expensive than other options. Compared with no intervention, temporary housing with PCR every 2 weeks was associated with 81% fewer infections (376) and 542% higher costs ($39.12 million) at an Re of 2.6, 82% fewer infections (95) and 2568% higher costs ($38.97 million) at an Re of 1.3, and 59% fewer infections (71) and 7114% higher costs ($38.94 million) at an Re of 0.9. Results were sensitive to cost and sensitivity of PCR and ACS efficacy in preventing transmission. Conclusions and Relevance: In this modeling study of simulated adults living in homeless shelters, daily symptom screening and ACSs were associated with fewer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and decreased costs compared with no intervention. In a modeled surging epidemic, adding universal PCR testing every 2 weeks was associated with further decrease in SARS-CoV-2 infections at modest incremental cost and should be considered during future surges.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Health Care Costs , Hospitalization/economics , Housing/economics , Ill-Housed Persons , Mass Screening/methods , COVID-19/economics , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , Cohort Studies , Communicable Disease Control/economics , Computer Simulation , Cost-Benefit Analysis , Decision Support Techniques , Humans , Mass Screening/economics , SARS-CoV-2 , Symptom Assessment/economics , Symptom Assessment/methods , United States/epidemiology
8.
Lancet Glob Health ; 9(2): e120-e129, 2021 02.
Article in English | MEDLINE | ID: covidwho-922185

ABSTRACT

BACKGROUND: Health-care resource constraints in low-income and middle-income countries necessitate the identification of cost-effective public health interventions to address COVID-19. We aimed to develop a dynamic COVID-19 microsimulation model to assess clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal province, South Africa. METHODS: We compared different combinations of five public health interventions: health-care testing alone, where diagnostic testing is done only for individuals presenting to health-care centres; contact tracing in households of cases; isolation centres, for cases not requiring hospital admission; mass symptom screening and molecular testing for symptomatic individuals by community health-care workers; and quarantine centres, for household contacts who test negative. We calibrated infection transmission rates to match effective reproduction number (Re) estimates reported in South Africa. We assessed two main epidemic scenarios for a period of 360 days, with an Re of 1·5 and 1·2. Strategies with incremental cost-effectiveness ratio (ICER) of less than US$3250 per year of life saved were considered cost-effective. We also did sensitivity analyses by varying key parameters (Re values, molecular testing sensitivity, and efficacies and costs of interventions) to determine the effect on clinical and cost projections. FINDINGS: When Re was 1·5, health-care testing alone resulted in the highest number of COVID-19 deaths during the 360-day period. Compared with health-care testing alone, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres reduced mortality by 94%, increased health-care costs by 33%, and was cost-effective (ICER $340 per year of life saved). In settings where quarantine centres were not feasible, a combination of health-care testing, contact tracing, use of isolation centres, and mass symptom screening was cost-effective compared with health-care testing alone (ICER $590 per year of life saved). When Re was 1·2, health-care testing, contact tracing, use of isolation centres, and use of quarantine centres was the least costly strategy, and no other strategies were cost-effective. In sensitivity analyses, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres was generally cost-effective, with the exception of scenarios in which Re was 2·6 and when efficacies of isolation centres and quarantine centres for transmission reduction were reduced. INTERPRETATION: In South Africa, strategies involving household contact tracing, isolation, mass symptom screening, and quarantining household contacts who test negative would substantially reduce COVID-19 mortality and would be cost-effective. The optimal combination of interventions depends on epidemic growth characteristics and practical implementation considerations. FUNDING: US National Institutes of Health, Royal Society, Wellcome Trust.


Subject(s)
COVID-19/prevention & control , Epidemics/prevention & control , Public Health/economics , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Computer Simulation , Cost-Benefit Analysis , Humans , Infant , Infant, Newborn , Middle Aged , Models, Biological , Public Health/methods , South Africa/epidemiology , Young Adult
9.
medRxiv ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-900747

ABSTRACT

IMPORTANCE: Approximately 356,000 people stay in homeless shelters nightly in the US. They are at high risk for COVID-19. OBJECTIVE: To assess clinical outcomes, costs, and cost-effectiveness of strategies for COVID-19 management among sheltered homeless adults. DESIGN: We developed a dynamic microsimulation model of COVID-19 in sheltered homeless adults in Boston, Massachusetts. We used cohort characteristics and costs from Boston Health Care for the Homeless Program. Disease progression, transmission, and outcomes data were from published literature and national databases. We examined surging, growing, and slowing epidemics (effective reproduction numbers [Re] 2.6, 1.3, and 0.9). Costs were from a health care sector perspective; time horizon was 4 months, from April to August 2020. SETTING & PARTICIPANTS: Simulated cohort of 2,258 adults residing in homeless shelters in Boston. INTERVENTIONS: We assessed daily symptom screening with polymerase chain reaction (PCR) testing of screen-positives, universal PCR testing every 2 weeks, hospital-based COVID-19 care, alternate care sites [ACSs] for mild/moderate COVID-19, and temporary housing, each compared to no intervention. MAIN OUTCOMES AND MEASURES: Cumulative infections and hospital-days, costs to the health care sector (US dollars), and cost-effectiveness, as incremental cost per case prevented of COVID-19. RESULTS: We simulated a population of 2,258 sheltered homeless adults with mean age of 42.6 years. Compared to no intervention, daily symptom screening with ACSs for pending tests or confirmed COVID-19 and mild/moderate disease led to 37% fewer infections and 46% lower costs (Re=2.6), 75% fewer infections and 72% lower costs (Re=1.3), and 51% fewer infections and 51% lower costs (Re=0.9). Adding PCR testing every 2 weeks further decreased infections; incremental cost per case prevented was $1,000 (Re=2.6), $27,000 (Re=1.3), and $71,000 (Re=0.9). Temporary housing with PCR every 2 weeks was most effective but substantially more costly than other options. Results were sensitive to cost and sensitivity of PCR and ACS efficacy in preventing transmission. CONCLUSIONS & RELEVANCE: In this modeling study of simulated adults living in homeless shelters, daily symptom screening and ACSs were associated with fewer COVID-19 infections and decreased costs compared with no intervention. In a modeled surging epidemic, adding universal PCR testing every 2 weeks was associated with further decrease in COVID-19 infections at modest incremental cost and should be considered during future surges.

10.
medRxiv ; 2020 Oct 11.
Article in English | MEDLINE | ID: covidwho-636369

ABSTRACT

BACKGROUND: Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. METHODS: We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and molecular testing for symptomatic individuals (MS); and Quarantine Centres (QC), for household contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (Re) of 1·5 and 1·2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER)

SELECTION OF CITATIONS
SEARCH DETAIL